We are creating a unified UKRI website that brings together the existing research council, Innovate UK and Research England websites.
If you would like to be involved in its development let us know.

Site search
Back to blog

Why worms and fish are good models for epilepsy

by Guest Author on 7 Apr 2017

Alistair Jones is a PhD student at the University of Liverpool, funded through the MRC Discovery Medicine North (DiMeN) Doctoral Training Partnership. He explains how using worms and fish in research could help us find new ways of treating drug-resistant epilepsy. 

Image 20170322 31210 9ip28m

Zebrafish. Image credit: Kazakov Maksim/Shutterstock.com

Epilepsy is the most common neurological disorder in the UK – about 600,000 people have the condition. Unfortunately, for a third of those people, there are no effective treatments. But fish and worms might be about to change that.

Fish and worm “models” of epilepsy are giving scientists fresh insights into the condition – insights that may eventually lead to drugs being developed to treat the one-third who’ve been left out in the cold.

Until recently, scientists didn’t know much about the causes of epilepsy. This has led to a large proportion of research being conducted using chemically induced seizures in rodents. Many drugs that can reduce seizures in these models have become the epilepsy treatments that are prescribed today. But although this has led to effective drugs being developed for most people with epilepsy, it has provided no options for refractory (drug-resistant) epilepsy.

DNA analysis opens new doors

Since 1995 and the discovery of the first DNA mutation seen to cause epilepsy, research into other mutations that result in the disorder has greatly expanded our pool of knowledge. New DNA manipulation techniques allow us to take these faulty genes and implant them in other animals. This can be used to create epilepsy models for the types of epilepsy that aren’t currently treatable; the animal models that can then be used to test new drugs to treat the disorder.

Rodents may seem like an obvious choice for this line of research, but they are expensive, can be technically tricky, and there are a large number of ethical issues to consider when using mammals in science. A lot of these issues can be solved by turning to simple organisms such as roundworm and zebrafish.

Both of these animal models are well understood by scientists. The position of every cell in a roundworm is known and has been mapped. Although simple, they have a large set of measurable movements and, because of their transparency, fluorescent proteins allow us to visualise almost every cell type. They also produce a vast number of offspring, which, when all combined, creates a powerful testing tool.

Roundworm expressing green fluorescent protein in specific neurons. Image credit: Shiquan Wong, Liverpool University

How relatable are these models to humans?

Many genes involved in human diseases are conserved between humans, roundworms and zebrafish. In fact, 40% of roundworm genes and 84% of zebrafish genes have a similar function to their human counterparts.

Using DNA manipulation techniques, such as CRISPR-Cas9, where an enzyme can be guided to remove and replace specific regions of DNA, similar mutations can be created to mimic faulty human genes. Genes from one of these models can even be replaced with the human gene. We can then study the effects on the behaviour and health of the animal to get a better understanding of the disruptions made through the mutations.

Rather than dealing with the complex nervous system in a mammal, this approach means you can deal with a simpler system while still maintaining the complexity of using a whole organism. If you think of a heavily crowded room where someone is being extremely noisy, you may be able to hear that someone is being loud but still unable to see them or hear what they are saying. This would be easier in a less crowded room.

Research with simple organisms is the same: it’s easier to find how the mutations interfere with the animal’s normal functioning without the background noise. This has already given insights into previously difficult to characterise epilepsy syndromes such as lissencephaly, whereby a brain malformation causes seizures (lissencephaly means “smooth brain”). At the University of Alabama, researchers created DNA mutations in roundworms similar to those in lissencephaly. This helped the scientists to discover that seizures in this disorder were linked to disrupted neuronal transport.

It is difficult to make a direct comparison between these simple organisms and humans, but by rapidly providing a large amount of functional information, before progressing to tests in animals, simple creatures – like worms and fish – could reduce the cost of animal research. So using these models as a frontline screening tool may save time, money and effort in drug development.

With a new abundance of genetic information coupled with powerful gene editing tools, expect to see some more unusual models in future research. The ability to integrate epilepsy mutations from humans into these models will begin to change the way drug testing is done. And, hopefully, the one-third of people with refractory epilepsy will eventually get the treatments they so badly need.

Alistair Jones

This article was originally published on The Conversation. Read the original article.

All MRC-funded research using animals is conducted in accordance with UK law and ethically approved by an independent review board. MRC researchers are expected to follow the highest standards of animal welfare. More information is available on our website.


No comments have been posted

Leave a reply

You may use basic HTML in your comments. Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.


From category

Share this: